Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.
نویسندگان
چکیده
A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.
منابع مشابه
Towards Photoacoustic Mammography
Materials for solid photoacoustic breast phantoms based on poly(vinyl alcohol) hydrogels are presented. Phantoms intended for use in photoacoustics must possess both optical and acoustic properties of tissue. To realize the optical properties of tissue, one approach was to optimize the number of freezing and thawing cycles of aqueous poly(vinyl alcohol) solutions, a procedure which increased th...
متن کاملFabrication of Polyvinyl Alcohol/Kefiran Nanofibers Membrane Using Electrospinning
The Poly (vinyl alcohol)/Kefirane nanofiber membrane was successfully fabricated for the firsttime using electrospinning of the polyvinyl alcohol (PVA) and Kefirane blend solution. Scanningelectron microscope (SEM), attenuated total reflectance Fourier transform infrared (ATRFT-IR), and differential scanning calorimetry (DSC) were used to characterize the electrospunPoly (vinyl alcohol)/Kefiran...
متن کاملSynthesis of pH Sensitive Hydrogels Based on Poly Vinyl Alcohol and Poly Acrylic Acid
In this research, hydrogels based on poly vinyl alcohol and poly acrylic acid blend were prepared which were cross-linked by applied thermal conditions. Afterward, effects of time and heating on water uptake were investigated. The highest water uptake value exhibited by the sample that was heated for 20 min. at 110 ºC was about 2129% after 4 days at equilibrium state. Hydrogels exhibited p...
متن کاملA Fast Method for Synthesis Magnesium Hydroxide Nanoparticles, Thermal Stable and Flame Retardant Poly vinyl alcohol Nanocomposite
Magnesium hydroxide nanostructures as an effective flame retardant were synthesized by a facile and rapid microwave reaction. The effect of different surfactants such as cationic, anionic and polymeric on the morphology of magnesium hydroxide nanostructures was investigated. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform in...
متن کاملRoom Temperature Preparation of Aluminum Hydroxide Nanoparticles and Flame Retardant Poly Vinyl Alcohol Nanocomposite
Al(OH)3 nanoparticles were synthesized by a simple precipitation reaction. The effect of various amines like ethylene diamine, propylene diamine, triethylenetetramine and tetraethylenepentamine as precipitating agents on the morphology of Al(OH)3 nanostructures was investigated. The influence of Al(OH)3 nanoparticles on the flame retardancy of the poly vinyl alcohol (PVA) matrix was studied usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 16 7 شماره
صفحات -
تاریخ انتشار 2011